Changes in water structure induced by a hydrophobic solute probed by simulation of the water hydrogen bond angle and radial distribution functions.
نویسندگان
چکیده
In order to better characterize changes in water structure induced by a hydrophobic solute the oxygen-oxygen and hydrogen-hydrogen radial distribution functions (goo(r), ghh(r)) and the hydrogen bond angle distribution function p(theta) for water molecules in the first hydration shell of the tetramethyl ammonium (TMA) cation were computed using Monte Carlo simulations. goo(r) and ghh(r) were corrected for the effect of solute volume exclusion on the local solvent density so that intrinsic structural changes independent of local solvent density variations could be detected. Comparison of ghh(r) of TMA's first hydration shell water with ghh(r) for bulk water shows subtle but clear evidence of structure formation induced by the ion. These changes in ghh(r) are very similar to those seen experimentally for larger tetra-alkyl ammonium ions in previous neutron diffraction experiments. Larger changes in p(theta) in the first hydration shell of TMA were seen. Comparison of changes in p(theta) with changes in goo(r) and ghh(r) show that the angle distribution function provides the most sensitive way to analyze water structure changes associated with hydrophobic solvation.
منابع مشابه
Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کاملWater structure changes induced by hydrophobic and polar solutes revealed by simulations and infrared spectroscopy
A combination of simulations and Fourier transform infrared spectroscopy was used to examine the effect of three ionic solutes ~KCl, NaCl, and KSCN!, the polar solute urea, and the osmolyte trimethylamine-N-oxide ~TMAO! on a water structure. The ionic solutes increase the mean water– water H-bond angle in their first hydration shell concomitantly shifting the OH stretching mode to higher freque...
متن کاملAnisotropic structure and dynamics of the solvation shell of a benzene solute in liquid water from ab initio molecular dynamics simulations.
The anisotropic structure and dynamics of the hydration shell of a benzene solute in liquid water have been investigated by means of ab initio molecular dynamics simulations using the BLYP (Becke-Lee-Yang-Parr) and dispersion corrected BLYP-D functionals. The main focus has been to look at the influence of π-hydrogen-bonding and hydrophobic interactions on the distance and angle resolved variou...
متن کاملNonpolar solutes enhance water structure within hydration shells while reducing interactions between them.
The origins of the hydrophobic effect are widely thought to lie in structural changes of the water molecules surrounding a nonpolar solute. The spatial distribution functions of the water molecules surrounding benzene and cyclohexane computed previously from molecular dynamics simulations show a high density first hydration shell surrounding both solutes. In addition, benzene showed a strong pr...
متن کاملA new angle on heat capacity changes in hydrophobic solvation.
The differential solubility of polar and apolar groups in water is important for the self-assembly of globular proteins, lipid membranes, nucleic acids, and other specific biological structures through hydrophobic and hydrophilic effects. The increase in water's heat capacity upon hydration of apolar compounds is one signature of the hydrophobic effect and differentiates it from the hydration o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical chemistry
دوره 78 1-2 شماره
صفحات -
تاریخ انتشار 1999